

An Exploration and Comparison of the Effects of Data Structures on the Computational
Time of Fluid Simulation

To what extent does the time per frame of calculating fluid simulation differ due to the
underlying data structure used?

A Computer Science IB Extended Essay

3924 words

Table of Contents

1. Introduction ... 1

2. Background Information ... 2

2.1 Fluid Physics ... 2

2.2 Previous Fluid Simulation Work ... 2

2.3 Grid-Based Algorithms ... 3

2.4 Optimized Grid-Based Algorithm ... 5

2.5 Particle-Based Algorithm .. 8

2.6 Optimized Particle-Based Algorithms .. 9

2.7 Other Algorithms ... 11

3. Experiment Methodology ... 11

3.1 The Algorithms Used .. 11

3.2 Independent and Dependent Variables .. 12

3.3 Controlled Variables ... 13

4. Experiment Results ... 13

4.1 Data Table ... 13

4.2 Algorithm Performance Graphs .. 14

4.3 General Analysis ... 15

4.4 Sample Raw Data and Analysis .. 17

5. Further Research ... 19

6. Conclusion .. 20

7. References ... 21

1

1. Introduction

In 2018, Square Enix released the videogame Shadow of the Tomb Raider, which was

immediately praised by reviewers for having stunning graphics (Metacritic, 2018). Below the

surface, highly optimized real-time fluid simulation algorithms created the game’s smoke and

water. Nowadays, many games include interactive flowing fluids, a refreshing change from usual

rigid physics. As a game developer, simulating fluids not only helps me create more realistic

game environments, but also inspires me to create unique and interactive game mechanics.

Algorithms are measured by their computational efficiency, or the amount of

computational resources (space and time) required depending on the input (Thomas, 2020). A

more efficient and desirable algorithm would maintain visual quality while having higher frame

rates and lower memory usage. After all, my games require aesthetically detailed and

interactable real-time fluids. This essay focuses on one aspect of computational efficiency:

computational time, measured by the time per update or time per frame.

In the field of computational fluid dynamics (CFD), computers simulate fluids by solving

the Navier-Stokes equations on a set of small masses of fluids, called fluid parcels. The various

fluid simulation algorithms can be categorized into grid-based Eulerian algorithms, where fluid

flows through specific locations in space (or grid cells) as time passes, or particle-based

Lagrangian algorithms, where individual fluid parcels (or particles) are traced through space and

time (Schuermann, 2016). Grid-based techniques are more numerically accurate, but only

operate in limited grid spaces. Particle-based techniques better model fluid splashes and are

unrestricted in space, making them more suited for video games. Optimized techniques rely on

the Eulerian or Lagrangian framework but use other data structures like trees. Compared to brute

force searching for a list of particles, an underlying grid significantly decreases computational

2

time as knowing the indexes of relevant neighboring fluid parcels allows for faster data access

and manipulation.

2. Background Information

2.1 Fluid Physics

A fluid is any liquid or gas that continuously changes in shape and is subject to stress,

allowing it to flow. There are several types, including the inviscid ideal fluid, Newtonian fluids

which have constant viscosity, and non-Newtonian fluids with varied viscosity (The Editors of

Encyclopaedia Britannica, 2021). Fluids can be compressible, with variable density and volume,

or incompressible.

Incompressible fluid motion is precisely described by the Navier-Stokes equations, with

the first for the conservation of momentum and the second for incompressibility:

𝜌 "
𝜕𝑢
𝜕𝑡 + 𝑢 ⋅ Δ𝑢) = −∇𝑝 + 𝜂∇!𝑢 + 𝜌𝑔

∇ ∙ 𝑢 = 0

𝜌 is the fluid density, 𝑢 is the velocity vector field, 𝑡 is the time, 𝑝 is the pressure, 𝜂 is the

viscosity, and 𝑔 is the external force (or gravity) vector. The equation roughly states that net

force on a particle is the sum of the pressure force, viscosity force, and external force

(Schuermann, 2016).

2.2 Previous Fluid Simulation Work

Fluid flow governed by the Navier-Stokes equations were first modelled on a computer

by the T-3 group at the Los Alamos National Lab (Harlow & Welch, 1965). In the field of

computer graphics, the Navier-Stokes equations were first solved by Foster & Mexatas (1996). A

3

few decades later, Stam (1999) introduced a stable and highly efficient grid-based Eulerian fluid

simulation, consisting of a semi-Lagrangian advection technique. Fluid simulation was also

computed with the Smoothed Particle Hydrodynamics Lagrangian method, first introduced for

solving astronomical problems by Gingold and Monaghan (1977), and then remodeled by

Müller, Charypar, and Gross (2003) to solve the Navier-Stokes equations. Lamorlette et al. have

also used the Navier-Stokes equations to model fire, clouds, particle explosions, variable

viscosity, bubbles and surface tension, splash and foam, etc. (as cited in Losasso, Gibou, &

Fedkiw, 2004).

2.3 Grid-Based Algorithms

Figure 1: MAC Eulerian simulation of two colliding
fluid bodies (blue and yellow). Color depicts density.

Figure 2: MAC grid after diffusion and advection for
several frames

The marker-and-cell (MAC) method, developed by Harlow and Welch (1965), models

fluid by discretizing fluid into “marker” particles on a velocity field, representing them with a

grid of cells. It is widely used in grid-based fluid simulation. This essay analyzes the

unconditionally stable MAC Eulerian incompressible fluid simulation algorithm by Stam (2003),

using Ash’s (2006) simplified code implementation. Fluid is simulated from an Eulerian

viewpoint on a MAC grid, representing the fluid density and velocity at discrete points in space

4

(Figures 1 and 2). Boundary grid cells reflect the x- and y-components of adjacent fluid

velocities and duplicate the adjacent fluid densities. For each update, the order is (1) diffuse

velocity vectors, (2) enforce incompressibility, (3) advect velocity vectors over the velocity

vector field, (4) enforce incompressibility again, (5) diffuse density, and (6) advect density over

the velocity vector field.

For the diffusion of viscous fluid, each grid cell’s field quantity (density or velocity)

decreases from outflow and increases from inflow from the four adjacent neighbors. Those new

quantities are solved using an iterative method called Gauss-Seidel relaxation, such that diffusing

backwards in time yields the starting quantities. There is a safe constant iteration count of ten.

By eliminating inward or outward flows in the velocity field, conservation of mass and

thus fluid incompressibility is enforced. This also allows for swirly fluid vortices. Applying

Hodge decomposition, the mass-conserving field is the difference of the current velocity field

and a gradient field. This gradient field is calculated by using Gauss-Seidel relaxation for every

grid cell to solve a partial differential equation called the Poisson equation.

Advection, the transfer of matter by the fluid’s flow, is calculated through Stam’s

groundbreaking Semi-Lagrangian model. Each grid cell’s fluid density is modelled as a

Lagrangian particle in the center and traced through the velocity field one timestep backwards to

find its previous position. At this previous position, the four grid cell neighbors’ densities are

accessed in constant time, and linearly interpolated to calculate the original grid cell’s new

density value. This requires accessing two grid data structures, one previous density field and

one for the new density values. Velocity advection, where the “velocity field is moved along

itself” (Stam, 2003, p. 8), is likewise calculated by replacing fluid density with velocity.

5

During an update, each grid cell mathematically calculates the indexes of a constant

number of other grid cells, allowing 𝑂(1) constant access time. As this runs for each grid cell,

the algorithm theoretically updates in linear time, based on the amount of grid cells.

2.4 Optimized Grid-Based Algorithm

 The reliance of grid-based fluid simulators on an underlying grid covering the entire

simulation space is a disadvantage. Detailed fluids require denser grids, and cells with zero fluid

density must still be updated, costing both memory and time. An optimization is to use a

quadtree or octree data structure to replace the grid (Losasso, Gibou, & Fedkiw, 2004). A

quadtree is a tree with four nodes, used in 2D simulation, while octrees for 3D have eight nodes.

For quadtrees, each node’s children are subtrees and cover a fourth of the area that the parent

node covers. Only leaf nodes (nodes without children) contain field quantities like density and

velocity.

6

Figure 3: Quadtree-optimized Eulerian simulation with
adaptive refinement

Figure 4: South neighbor-finding from the source node
starred in blue. Orange outlines the neighbor node of
equal height, and green dots the final leaf neighbors.

My algorithm roughly follows Shi and Yu’s (2004) approach, and basically replaces the

MAC grid of Stam’s (2003) algorithm with a quadtree that adaptively refines or coarsens

depending on regional fluid visual complexity (Figure 3).

 First, for each node whose children are all leaf nodes, a crude check for fluid visual

uniformity is performed: if the maximum difference in fluid density of the node’s children is

below 0.4 units, then the node is coarsened, meaning its own field quantities become averages of

its children’s quantities, and the children are deleted.

Then, node neighbors were found through Samet’s (1989) algorithm and stored (as

demonstrated in Figure 4). For each source leaf node, and for each of the four directions, the

algorithm recursively traverses up the tree until the current node contains a neighbor node. The

algorithm then traverses down the tree until the current node is a leaf node greater or equal in

height to the source node. If the current node is a non-leaf node of equal height, then all its leaf

children adjacent to the source node are recursively searched. If a neighbor is beyond the spatial

bounds of the root node, then a neighbor “border node” is searched from a separate border nodes

7

array (as shown on the edges in Figure 3). I created border nodes to efficiently solve edge cases,

avoiding unnecessary quadtree refinement along its borders.

Next, if the maximum difference of density of a leaf node’s neighbors is more than 40

units, then that node is refined (by copying parent quantities to new children).

Figure 5: Java higher-order function forAll that recursively
loops through all quadtree leaf nodes and calls some function 𝑓

on those nodes

Figure 6: Function search that recursively
searches in the child node the point (𝑖, 𝑗)

belongs in, until it reaches a leaf node

The functions of boundary setting, diffusion, projection, and advection were completely

modelled off Stam’s (2003) Eulerian algorithm. In these functions, instead of a grid, all leaf

nodes are recursively looped through (using the higher-order function in Figure 5), and their

values were subsequently set based on the values of precomputed neighbor nodes. Semi-

Lagrangian advection was performed by executing a recursive search function in 𝑂(log 𝑛) time

(Figure 6) to back-trace fluid parcels.

Let 𝑛 be the maximum number of highest resolution nodes. For each node, neighbor-

finding and node searching both take 𝑂(log 𝑛) time. In the worst-case, both are performed for 𝑛

leaf nodes, leading to 𝑂(𝑛 log 𝑛) total time complexity. Looping through all leaf nodes only

8

takes 𝑂(𝑛) time and thus is ignored. 𝑂(𝑛 log 𝑛) is worse than the linear time complexity of the

original Eulerian algorithm, challenging the “optimization” of this quadtree algorithm. However,

depending on the simulation situation, this algorithm’s average computational time may still

drastically improve.

2.5 Particle-Based Algorithm

One of the most prominent particle-based algorithms is Smoothed Particle

Hydrodynamics (SPH). A particle system represents discretized fluid parcels. Each particle field

quantity is calculated based on its neighbors within a certain support radius 𝐻, using the SPH

rule that “a scalar quantity A is interpolated at location r by a weighted sum of contributions

from all particles” (Müller, Charypar, & Gross, 2003, p. 155). The SPH rule equation is

𝐴"(𝑟) ==𝑚#
𝐴#
𝜌#
𝑊(𝑟 − 𝑟# , 𝐻)

#

 Where each particle of index 𝑗 has mass 𝑚#, position 𝑟#, density 𝜌#, and field quantity 𝐴#.

𝑊(𝑟, ℎ) is the smoothing kernel that gives weights to neighboring particles within support radius

ℎ, such that the resulting weighted average quantity from this equation matches physical fluid

particle interaction.

9

Figure 7: Lagrangian simulation
with gravity on an initial block of

fluid particles

Figure 8: Fluid particles break
formation as forces are applied to

every particle

Figure 9: Fluid particles collide
with the edges of simulation space

and splash

 Using the Navier-Stokes equations, the SPH rule, and other physics equations, equations

for the density, acceleration, pressure force, and viscous force are derived. To maintain code

simplicity, surface tension is ignored. First, the algorithm brute forces neighbor finding by

looping through each particle 𝑖, and then checking if particle 𝑗 is a neighbor within radius 𝐻 in a

nested loop. Neighbor density contributions are summed to calculate pressure. After, density and

pressure of neighboring particles are used to calculate the forces acting on each particle. Finally,

the algorithm loops through each particle and accelerates and moves them based on those forces

(using forward Euler integration). Having nested loops means the theoretical time complexity is

𝑂(𝑛!). SPH simulation over multiple updates is displayed in Figures 7-9.

2.6 Optimized Particle-Based Algorithms

 That naïve nested loop neighbor finding algorithm can be optimized to reduce its 𝑂(𝑛!)

time complexity. Lagrangian particles can be represented by a grid with cell size 𝐻, where each

cell is a list of all the particles within that square location (ideally, there is only one particle per

grid cell). Each particle’s position directly maps to its grid index (Figure 10). For a particle in a

grid cell, its neighbors must be within an 𝐻 radius, meaning they only exist in adjacent cells.

10

Assuming one particle exists per cell, neighbor-finding would thus take constant time, causing

𝑂(𝑛) total time complexity. This optimization was originally proposed by Desbrun and Gascuel

(1996).

Figure 10: 2D grid array and particles ArrayList. They are used in function addParticle, which maps a particle’s
(posX,	posY) coordinate to a corresponding grid index and adds that particle to the end of that grid cell’s ArrayList.

I personally implemented this algorithm (Figure 10). To accomodate for particles

clustering in the same grid cell under high pressures, the grid is represented as a 2D array of

ArrayLists. The grid stores the indexes of particles which are stored in another ArrayList.

Looping over a separate list of particles allows skipping over grid cells without particles stored

within. Each particle class is paired with 𝑥 and 𝑦 grid indexes. The pair class is a generic Java

class supporting two separate data types and values.

Other optimizations exist for Lagrangian fluid simulation. A spatial hash table allows

particles of any position (beyond the range of a set grid) to be stored, and simultaneously saves

memory as data is only stored for occupied cells. Spatial hashing can sometimes be inefficient if

multiple positions are hashed to the same index. Another optimization is to adaptively refine

particles based on the regional fluid flow complexity, similar to the quadtree optimization

(Adams, Pauly, Keiser, & Guibas, 2007). Fluid particles are split into smaller particles if the flow

11

is dynamic, or merged into one big particle if the flow is slow and steady. This effectively

reduces the amount of particles, which quickens computation while maintaining visual quality.

2.7 Other Algorithms

 Many other grid- and particle-based algorithms exist to simulate fluids. Hybrid

algorithms compute Lagrangian particles on an Eulerian grid, gaining the advantages of both

particle- and grid-based methods. These include particle-in-cell, fluid-implicit-particle, and

material point method. Deep learning convolutional neural networks can also learn to simulate

fluids.

3. Experiment Methodology

3.1 The Algorithms Used

 Four fluid simulation algorithms are measured and compared:

1. Ash’s (2006) implementation of Stam’s (2003) grid-based MAC Eulerian algorithm

2. Quadtree-optimized Eulerian algorithm, which I based off algorithm (1)

3. Schuermann’s (2017) implementation of Müller, Charypar, and Gross’s (2003) particle-

based SPH Lagrangian algorithm

4. Grid-optimized Lagrangian algorithm, which I based off algorithm (3)

 I implemented all algorithms in Java with minor changes to the original code. In

algorithm (3), Schuermann uses an external C++ library for vector math. I instead utilized my

own Java Vector class, which contained the functions of vector addition, subtraction,

normalization, dot product, and magnitude.

12

3.2 Independent and Dependent Variables

The dependent variable is the time per frame, or the time elapsed after one simulation

update. Specifically, the update function computes the forces, velocities, densities, and positions

of each fluid parcel. To measure this dependent variable, Java’s built-in System.nanoTime()

is called right before and after calling the main update function and subtracted to obtain a long-

type elapsed time variable. For each independent variable manipulation, there was three trials,

and each trial consisted of ten frames (updates). The time per frame was averaged over these ten

frames and subsequently printed to the console.

The independent variable 𝑁 is the amount of fluid parcels per simulation. In the Eulerian

algorithm, 𝑁 is the number of cells in a square grid, meaning the length of the grid is √𝑁 cells.

Using a square grid allowed for a more balanced fluid space and simpler code. The density and

velocity components of each grid cell was initialized randomly within a certain range. The

quadtree-optimized Eulerian algorithm was initialized with the highest resolution of 𝑁 total leaf

nodes, set randomly to ensure more varied adaptive refinement as to obtain more holistic data.

In particle-based algorithms, 𝑁 is the number of particles. Particles move within a

constant square space of length 𝐿. During initialization, 𝑁 particles are spawned at random

locations within this space. In the grid-optimized Lagrangian algorithm, this meant particles

would more uniformly distribute among grid cells, reducing the effect of initial clustering on

computational time. Additionally, the support radius 𝐻 is set to I$
!
J %
√'

, meaning for a 1D space,

√𝑁 particles cover a length of %
!
, so 𝑁 particles only cover a fourth of the 2D space. Doing so

ensures particles can fit and move within the space. Each particle’s velocity was also randomized

within the same range as those in Eulerian simulations to produce comparable data.

13

3.3 Controlled Variables

 Each simulation had ten updates or ten frames. To collect data focusing on comparing

time per frame, fluid parcels were not rendered, which eliminated many unrelated rendering

efficiency variables such as visual shape of fluid parcels, computation of pixel colors, and anti-

aliasing.

The code was compiled using Javac and run on a 2020 13-inch MacBook Pro computer

with an Apple M1 Chip and 8 GB of memory. During the experiment, the only applications

running were Excel and IntelliJ IDEA Community Edition 2021. Checking Mac’s Activity

Monitor (which displayed all running processes on the computer) ensured that no other major

background processes were running. Thus, the available CPU power and memory remained as

constant as possible, ensuring maximum precision of the experimental data.

4. Experiment Results

4.1 Data Table

 The table below lists the data for all four algorithms. The average time per frame column

uses milliseconds (converted from raw nanosecond data) for easier readability, and displays

values to the hundredth place to maintain high accuracy. An extra column of frame rate (inverse

of time per frame, converted to seconds) is provided to intuitively measure the time per frame.

14

Algorithm
Number of

Fluid Parcels
Average Time
per Frame (ms)

Frame
Rate (Hz)

Eulerian

1024 5.96 168
4096 9.74 103
9216 14.26 70
12544 15.56 64
16384 18.88 53

Quadtree-
Optimized
Eulerian

1024 27.82 36
4096 49.07 20
9216 79.41 13
12544 102.12 10
16384 124.62 8

Lagrangian

1024 22.71 44
4096 189.70 5
9216 722.42 1
12544 1309.44 1
16384 2180.73 0

Grid-
Optimized
Lagrangian

1024 7.83 128
4096 18.70 53
9216 31.01 32
12544 38.25 26
16384 41.27 24

Table 1: Each algorithm’s average time per frame (for ten frames)

4.2 Algorithm Performance Graphs

The graphs below illustrate the data of the four algorithms. Each graph also displays a

trend line, its equation, and its correlation 𝑅! value.

15

Graph 1: Eulerian algorithm data

Graph 2: Quadtree-Optimized Eulerian algorithm data

Graph 3: Lagrangian algorithm data

Graph 4: Grid-Optimized Lagrangian algorithm data

4.3 General Analysis

 Evidently, grid-based algorithms and optimizations run faster. The grid-based Eulerian

algorithm has a linear relationship graph, affirming its theoretical linear time complexity (Graph

1). For all numbers of parcels, it had the lowest time per frame compared to all the other

algorithms. This makes sense as the for-loop iterations to update the MAC grid is proportional to

the number of parcels, and accessing any grid fluid parcel is done in constant time.

y	=	0.0008x	+	5.8834
R²	=	0.9807

0.00

5.00

10.00

15.00

20.00

25.00

0 5000 10000 15000 20000

Av
er
ag
e	
Ti
m
e	
pe
r	
Fr
am

e	
(m
s)

Number	of	Fluid	Parcels

y	=	0.0063x	+	22.186
R²	=	0.9994

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

0 5000 10000 15000 20000

Av
er
ag
e	
Ti
m
e	
pe
r	
Fr
am

e	
(m
s)

Number	of	Fluid	Parcels

y	=	0.0003x1.6349
R²	=	0.9956

0.00

500.00

1000.00

1500.00

2000.00

2500.00

0 5000 10000 15000 20000

Av
er
ag
e	
Ti
m
e	
pe
r	
Fr
am

e	
(m
s)

Number	of	Fluid	Parcels

y	=	0.1126x0.6136
R²	=	0.9918

0.00
5.00
10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00

0 5000 10000 15000 20000

Av
er
ag
e	
Ti
m
e	
pe
r	
Fr
am

e	
(m
s)

Number	of	Fluid	Parcels

16

The overall computational time of the grid-optimized Lagrangian algorithm was second

best. Whereas Eulerian MAC cells all have 4 neighbors, Lagrangian particles may have more

than four neighbors in adjacent cells, especially in the initial frames when same-cell particle

clustering occurs from random particle spawning. As a result, increasing neighbor-finding

iteration count caused more time per frame. However, the time per frame conformed to an

approximately square root relationship instead of the theoretical 𝑂(𝑛) for grid-based algorithms

(Graph 4). 𝑁 particles only cover a fourth of the space, meaning for higher amounts of particles,

there were more grid cells to spread out to. This made particle clustering less likely, meaning less

ArrayList looping, and thus less time per frame. However, the algorithm should demonstrate a

more linear relationship if there is one particle per cell due to constant time neighbor finding,

suggesting a limited range of data. A future experiment should thus have more manipulations of

fluid parcel count.

 In contrast, the unoptimized Lagrangian algorithm’s data supports its 𝑂(𝑛!) theoretical

time complexity (Graph 3). Its underlying list data structure meant neighbor finding had to be

brute forced. This caused time per frame to be whole seconds more than other algorithms. Thus,

using lists to store fluid parcels should be avoided at all costs.

Perhaps most surprisingly was how the quadtree-optimized Eulerian algorithm data

conformed to an almost linear relationship (Graph 2). The algorithm’s theoretical 𝑂(𝑛 log 𝑛)

time complexity was only calculated off worst-case quadtree recursive searches. It does not

reflect adaptive refinement during simulation. Without external influences, regions that were

initially uniform were coarsened, resulting in more regional uniformity, creating an overall trend

of coarsening. Coarsening means less nodes, which saves node searching time. This balances out

with the 𝑂(log 𝑛) node search time complexity, causing linear time complexity, but time per

17

frame is still five times that of the Eulerian algorithm due to extra recursion. Gradual coarsening

also suggests a concave down relationship matching 𝑂(log 𝑛) complexity for higher values of 𝑁,

demonstrating a methodological fault in having the maximum of independent variable 𝑁 be

16384, which is logarithmically unnoticeable.

4.4 Sample Raw Data and Analysis

 Examining the experimental raw data provides further insight into the performances of

the algorithms, as well as the experimental methodology’s effectiveness. The raw data below

displays the times per frame over 10 frames of the MAC-unoptimized and quadtree-optimized

Eulerian algorithm simulating 12544 fluid parcels:

 Time per Frame (ms)
Frame

Number Trial 1 Trial 2 Trial 3

1 53.83 51.69 54.60
2 25.43 23.81 23.42
3 12.36 14.51 11.67
4 9.84 9.65 9.01
5 11.40 10.50 12.25
6 9.62 9.58 9.69
7 9.37 9.92 9.75
8 9.02 9.53 9.71
9 7.69 7.10 7.19
10 10.23 7.21 7.18

Table 2: MAC Eulerian algorithm raw data

 Time per Frame (ms)
Frame

Number Trial 1 Trial 2 Trial 3

1 334.10 333.82 321.78
2 91.98 82.38 86.47
3 95.86 93.04 66.81
4 86.41 82.93 69.33
5 66.61 62.51 68.61
6 93.38 91.60 54.32
7 101.77 90.33 91.77
8 65.68 64.02 82.04
9 78.86 73.05 53.99
10 59.08 57.69 63.31

Table 3: Quadtree-optimized Eulerian algorithm raw
data

There is extra time taken for the first frame (Table 2). In fact, this applies to all other

algorithms. This was surprising as the Eulerian algorithm maintained a constant number of

iterations per update. The data is explained by Java’s Just-In-Time compiler (JIT), which uses

and saves computational resources by gradually analyzing and optimizing running Java code.

Initially, the JIT optimizes method calls, data flow, control flow, and memory, increasing the

18

update time (IBM Corporation, n.d.). Then, as the optimized code is run, the time per frame

decreases and plateaus.

The quadtree-optimized Eulerian algorithm (Table 3) displays more exaggerated

decreases in time per frame, especially in frames 1-3. This suggests that the algorithm’s self-

adapting resolution saved significant amounts of computational resources. The time per frame

fluctuations after the first 4 frames demonstrate the effects of arbitrary refinement and

coarsening.

The unoptimized and grid-optimized Lagrangian algorithms’ raw data for simulating

12544 fluid parcels also demonstrate nuanced computational behavior:

 Time per Frame (ms)
Frame

Number Trial 1 Trial 2 Trial 3

1 1899.15 1895.69 1984.00
2 1552.41 1572.28 1634.90
3 834.88 842.52 842.27
4 1304.29 1319.29 1314.82
5 1309.56 1316.14 1310.27
6 1314.39 1323.05 1332.34
7 1320.49 1312.29 1322.67
8 1316.93 1326.68 1328.92
9 1315.15 1329.59 1327.14
10 818.69 830.80 831.50

Table 4: Unoptimized Lagrangian algorithm raw data

 Time per Frame (ms)
Frame

Number Trial 1 Trial 2 Trial 3

1 130.77 119.74 128.40
2 63.91 48.07 65.23
3 38.12 41.23 34.33
4 32.57 30.71 31.11
5 24.48 31.99 30.00
6 20.81 19.09 22.43
7 18.40 15.88 28.52
8 21.12 16.00 20.43
9 22.42 18.09 16.87
10 17.90 20.21 18.60

Table 5: Grid-optimized Lagrangian algorithm raw
data

 These algorithms both demonstrate the first frame taking the longest, and time per frame

plateauing after 4 frames (Tables 4 and 5). The Table 4 frame 10 data seems unusual, but a

second experiment involving 20 frames revealed that for frames 10-20, the time was between

700 ms to 900 ms, meaning the time per frame just happened to reach its final plateau at frame

10. However, more inexplicable outliers appear at frame 3 in Table 4, similar to frame 4 in Table

2, frame 5 in Table 3, and frames 6-7 in Table 5. Thus, although the data mostly conforms to the

19

decreasing and eventual plateauing trend caused by JIT optimizations, systematic outliers

demonstrate uncontrolled compiler effects, and are topics of further investigation.

5. Further Research

The data in this experiment reveals the behaviors of algorithms that are list-based, grid-

based, and tree-based, but other CFD algorithms (especially hybrids) can also be tested and

compared for their computational times. Fluid starting positions can be predetermined to analyze

certain aspects of algorithms. The frame count and parcel count can be increased to better

analyze more general effects of underlying data structures on computational time.

Memory usage can also be considered to holistically analyze computational complexity.

It can shed new light on the extent to which the quadtree-optimized Eulerian algorithm actually

optimizes the MAC Eulerian algorithm. Quadtree simulation is best suited for large spaces,

where subtrees are only refined around fluid concentrated in specific locations. Testing that

might yield much more favorable computational efficiency data.

 There can be further exploration on CFD algorithms by testing the addition or removal of

fluid matter over time. Physical constants such as viscosity and diffusion can be changed to

simulate different kinds of fluids. Fluids can be subject to external forces from gravity and

collisions with solid obstacles, or even other types of fluids. Fluids can even be computed in

higher dimensions, like 3D space.

 Moreover, both grid-based and particle-based algorithms can leverage the powerful

parallel computation of GPUs to run even faster than they do on the CPU. This would better suit

modern standards and be more directly applicable to modern computers.

20

6. Conclusion

 The experimental results demonstrate that different underlying data structures cause

highly different computational times. From fastest to slowest are grid-based algorithms, tree-

based algorithms, then particle-based algorithms. Computational time was largely based off the

time complexity of neighbor data finding and accessing. The decreasing time per frame

throughout each trial also demonstrate the heavy influence of JIT optimizations.

There were many experimental limitations, and most were due to the copious

uncontrolled variables that made comparing computer algorithms difficult. If I were to repeat the

experiment, I would set viscosity, diffusion, gravity, parcel size, and bounding space to be the

same for all algorithms. I would disable real-time compiler optimizations (e.g., the JIT), to

eliminate the influence of a hidden compiler layer on computational time. I would also

additionally measure memory usage to better analyze computational efficiency.

 The applications of this experiment are numerous. Knowledge of the different

computational times of various algorithms allows one to make better judgements on using the

appropriate algorithm in certain situations. If I were to make a game that runs in real-time on

modern laptops, I would use the Eulerian algorithm for highly detailed smoke emissions limited

to a small volume, or the grid-optimized Lagrangian algorithm for flowing water throughout an

environment. Analysis of individual algorithms and why some perform better is crucial to

computational physicists and computer graphics researchers to designing new CFD algorithms. If

neighbor-finding is further optimized, then fluid can more efficiently be simulated to suit specific

constraints, or to apply to more general situations with dynamic fluid control. As a whole, the

essay demonstrates the overall trends in computer science, especially the efficiencies and

applications of various data structures to model discrete information, such as fluids.

21

7. References

Adams, B., Pauly, M., Keiser, R., & Guibas, L. J. (2007, July 29). Adaptively Sampled Particle

Fluids. ACM Transactions on Graphics, 26(3), 48-54. doi:10.1145/1276377.1276437

Ash, M. (2006, March 13). Fluid Simulation for Dummies. From Mike Ash:

https://mikeash.com/pyblog/fluid-simulation-for-dummies.html

Desbrun, M., & Gascuel, M.-P. (1996). Smoothed Particles: A new paradigm for animating

highly deformable bodies. Computer Animation and Simulation '96 (Proceedings of EG

Workshop on Animation and Simulation) (pp. 61-76). Springer-Verlag.

Foster, N., & Metaxas, D. (1996, September). Realistic Animation of Liquids. Graphical Models

and Image Processing, 58(5), 471-483. doi:10.1006/gmip.1996.0039

Gingold, R. A., & Monaghan, J. J. (1977, December 1). Smoothed particle hydrodynamics:

theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical

Society, 181(3), 375-389. doi:10.1093/mnras/181.3.375

Harlow, F. H., & Welch, J. E. (1965). Numerical Calculation of Time-Dependent Viscous

Incompressible Flow of Fluid with Free Surface. Physics of Fluids, 8, 2182-2189.

doi:10.1063/1.1761178

IBM Corporation. (n.d.). How the JIT compiler optimizes code. From IBM Documentation:

https://www.ibm.com/docs/en/ztpf/1.1.0.15?topic=compiler-how-jit-optimizes-code

Losasso, F., Gibou, F., & Fedkiw, R. (2004, August 1). Simulating Water and Smoke with an

Octree Data Structure. ACM Transactions on Graphics, 23(3), 457-462.

doi:10.1145/1015706.1015745

Metacritic. (2018). Shadow of the Tomb Raider. From Metacritic:

https://www.metacritic.com/game/playstation-4/shadow-of-the-tomb-raider/critic-reviews

22

Müller, M., Charypar, D., & Gross, M. (2003). Particle-Based Fluid Simulation for Interactive

Applications. In D. Breen, & M. Lin (Ed.), SCA '03: Proceedings of the 2003 ACM

SIGGRAPH/Eurographics symposium on Computer animation, (pp. 154-159). From

https://matthias-research.github.io/pages/publications/sca03.pdf

Samet, H. (1989). Neighbor Finding in Images Represented by Octrees. Computer Vision,

Graphics, and Image Processing, 46, 367-386. From

http://www.cs.umd.edu/~hjs/pubs/SameCVGIP89.pdf

Schuermann, L. V. (2016, May 23). Particle-Based Fluid Simulation with SPH. From Lucas V.

Schuermann: https://lucasschuermann.com/writing/particle-based-fluid-simulation

Schuermann, L. V. (2017, July 8). Implementing SPH in 2D. From Lucas V. Schuermann:

https://lucasschuermann.com/writing/implementing-sph-in-2d

Shi, L., & Yu, Y. (2004). Visual smoke simulation with adaptive octree refinement. The 7th

IASTED International Conference on Computer Graphics and Imaging (CGIM 2004).

Kauai.

Stam, J. (1999, Jul). Stable fluids. SIGGRAPH '99: Proceedings of the 26th annual conference

on Computer graphics and interactive techniques, (pp. 121-128).

doi:10.1145/311535.311548

Stam, J. (2003). Real-Time Fluid Dynamics for Games. Game Developers Conference. San Jose.

From https://www.dgp.toronto.edu/public_user/stam/reality/Research/pdf/GDC03.pdf

The Editors of Encyclopaedia Britannica. (2021, May 11). Fluid. From Encyclopaedia

Britannica: https://www.britannica.com/science/fluid-physics

23

Thomas, A. C. (2020, Jan 22). What is computational complexity? From Medium:

https://medium.com/the-ultimate-engineer/what-is-computational-complexity-

66722cd5f8dd

