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1. Introduction 

In 2018, Square Enix released the videogame Shadow of the Tomb Raider, which was 

immediately praised by reviewers for having stunning graphics (Metacritic, 2018). Below the 

surface, highly optimized real-time fluid simulation algorithms created the game’s smoke and 

water. Nowadays, many games include interactive flowing fluids, a refreshing change from usual 

rigid physics. As a game developer, simulating fluids not only helps me create more realistic 

game environments, but also inspires me to create unique and interactive game mechanics. 

Algorithms are measured by their computational efficiency, or the amount of 

computational resources (space and time) required depending on the input (Thomas, 2020). A 

more efficient and desirable algorithm would maintain visual quality while having higher frame 

rates and lower memory usage. After all, my games require aesthetically detailed and 

interactable real-time fluids. This essay focuses on one aspect of computational efficiency: 

computational time, measured by the time per update or time per frame. 

In the field of computational fluid dynamics (CFD), computers simulate fluids by solving 

the Navier-Stokes equations on a set of small masses of fluids, called fluid parcels. The various 

fluid simulation algorithms can be categorized into grid-based Eulerian algorithms, where fluid 

flows through specific locations in space (or grid cells) as time passes, or particle-based 

Lagrangian algorithms, where individual fluid parcels (or particles) are traced through space and 

time (Schuermann, 2016). Grid-based techniques are more numerically accurate, but only 

operate in limited grid spaces. Particle-based techniques better model fluid splashes and are 

unrestricted in space, making them more suited for video games. Optimized techniques rely on 

the Eulerian or Lagrangian framework but use other data structures like trees. Compared to brute 

force searching for a list of particles, an underlying grid significantly decreases computational 
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time as knowing the indexes of relevant neighboring fluid parcels allows for faster data access 

and manipulation. 

 

2. Background Information 

2.1 Fluid Physics 

A fluid is any liquid or gas that continuously changes in shape and is subject to stress, 

allowing it to flow. There are several types, including the inviscid ideal fluid, Newtonian fluids 

which have constant viscosity, and non-Newtonian fluids with varied viscosity (The Editors of 

Encyclopaedia Britannica, 2021). Fluids can be compressible, with variable density and volume, 

or incompressible. 

Incompressible fluid motion is precisely described by the Navier-Stokes equations, with 

the first for the conservation of momentum and the second for incompressibility: 

𝜌 "
𝜕𝑢
𝜕𝑡 + 𝑢 ⋅ Δ𝑢) = −∇𝑝 + 𝜂∇!𝑢 + 𝜌𝑔 

∇ ∙ 𝑢 = 0 

𝜌 is the fluid density, 𝑢 is the velocity vector field, 𝑡 is the time, 𝑝 is the pressure, 𝜂 is the 

viscosity, and 𝑔 is the external force (or gravity) vector. The equation roughly states that net 

force on a particle is the sum of the pressure force, viscosity force, and external force 

(Schuermann, 2016). 

 

2.2 Previous Fluid Simulation Work 

Fluid flow governed by the Navier-Stokes equations were first modelled on a computer 

by the T-3 group at the Los Alamos National Lab (Harlow & Welch, 1965). In the field of 

computer graphics, the Navier-Stokes equations were first solved by Foster & Mexatas (1996). A 
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few decades later, Stam (1999) introduced a stable and highly efficient grid-based Eulerian fluid 

simulation, consisting of a semi-Lagrangian advection technique. Fluid simulation was also 

computed with the Smoothed Particle Hydrodynamics Lagrangian method, first introduced for 

solving astronomical problems by Gingold and Monaghan (1977), and then remodeled by 

Müller, Charypar, and Gross (2003) to solve the Navier-Stokes equations. Lamorlette et al. have 

also used the Navier-Stokes equations to model fire, clouds, particle explosions, variable 

viscosity, bubbles and surface tension, splash and foam, etc. (as cited in Losasso, Gibou, & 

Fedkiw, 2004). 

 

2.3 Grid-Based Algorithms 

 

Figure 1: MAC Eulerian simulation of two colliding 
fluid bodies (blue and yellow). Color depicts density. 

 

Figure 2: MAC grid after diffusion and advection for 
several frames 

The marker-and-cell (MAC) method, developed by Harlow and Welch (1965), models 

fluid by discretizing fluid into “marker” particles on a velocity field, representing them with a 

grid of cells. It is widely used in grid-based fluid simulation. This essay analyzes the 

unconditionally stable MAC Eulerian incompressible fluid simulation algorithm by Stam (2003), 

using Ash’s (2006) simplified code implementation. Fluid is simulated from an Eulerian 

viewpoint on a MAC grid, representing the fluid density and velocity at discrete points in space 
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(Figures 1 and 2). Boundary grid cells reflect the x- and y-components of adjacent fluid 

velocities and duplicate the adjacent fluid densities. For each update, the order is (1) diffuse 

velocity vectors, (2) enforce incompressibility, (3) advect velocity vectors over the velocity 

vector field, (4) enforce incompressibility again, (5) diffuse density, and (6) advect density over 

the velocity vector field. 

For the diffusion of viscous fluid, each grid cell’s field quantity (density or velocity) 

decreases from outflow and increases from inflow from the four adjacent neighbors. Those new 

quantities are solved using an iterative method called Gauss-Seidel relaxation, such that diffusing 

backwards in time yields the starting quantities. There is a safe constant iteration count of ten. 

By eliminating inward or outward flows in the velocity field, conservation of mass and 

thus fluid incompressibility is enforced. This also allows for swirly fluid vortices. Applying 

Hodge decomposition, the mass-conserving field is the difference of the current velocity field 

and a gradient field. This gradient field is calculated by using Gauss-Seidel relaxation for every 

grid cell to solve a partial differential equation called the Poisson equation. 

Advection, the transfer of matter by the fluid’s flow, is calculated through Stam’s 

groundbreaking Semi-Lagrangian model. Each grid cell’s fluid density is modelled as a 

Lagrangian particle in the center and traced through the velocity field one timestep backwards to 

find its previous position. At this previous position, the four grid cell neighbors’ densities are 

accessed in constant time, and linearly interpolated to calculate the original grid cell’s new 

density value. This requires accessing two grid data structures, one previous density field and 

one for the new density values. Velocity advection, where the “velocity field is moved along 

itself” (Stam, 2003, p. 8), is likewise calculated by replacing fluid density with velocity. 
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During an update, each grid cell mathematically calculates the indexes of a constant 

number of other grid cells, allowing 𝑂(1) constant access time. As this runs for each grid cell, 

the algorithm theoretically updates in linear time, based on the amount of grid cells. 

 

2.4 Optimized Grid-Based Algorithm 

 The reliance of grid-based fluid simulators on an underlying grid covering the entire 

simulation space is a disadvantage. Detailed fluids require denser grids, and cells with zero fluid 

density must still be updated, costing both memory and time. An optimization is to use a 

quadtree or octree data structure to replace the grid (Losasso, Gibou, & Fedkiw, 2004). A 

quadtree is a tree with four nodes, used in 2D simulation, while octrees for 3D have eight nodes. 

For quadtrees, each node’s children are subtrees and cover a fourth of the area that the parent 

node covers. Only leaf nodes (nodes without children) contain field quantities like density and 

velocity. 
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Figure 3: Quadtree-optimized Eulerian simulation with 
adaptive refinement 

 

Figure 4: South neighbor-finding from the source node 
starred in blue. Orange outlines the neighbor node of 
equal height, and green dots the final leaf neighbors. 

My algorithm roughly follows Shi and Yu’s (2004) approach, and basically replaces the 

MAC grid of Stam’s (2003) algorithm with a quadtree that adaptively refines or coarsens 

depending on regional fluid visual complexity (Figure 3). 

 First, for each node whose children are all leaf nodes, a crude check for fluid visual 

uniformity is performed: if the maximum difference in fluid density of the node’s children is 

below 0.4 units, then the node is coarsened, meaning its own field quantities become averages of 

its children’s quantities, and the children are deleted. 

Then, node neighbors were found through Samet’s (1989) algorithm and stored (as 

demonstrated in Figure 4). For each source leaf node, and for each of the four directions, the 

algorithm recursively traverses up the tree until the current node contains a neighbor node. The 

algorithm then traverses down the tree until the current node is a leaf node greater or equal in 

height to the source node. If the current node is a non-leaf node of equal height, then all its leaf 

children adjacent to the source node are recursively searched. If a neighbor is beyond the spatial 

bounds of the root node, then a neighbor “border node” is searched from a separate border nodes 
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array (as shown on the edges in Figure 3). I created border nodes to efficiently solve edge cases, 

avoiding unnecessary quadtree refinement along its borders. 

Next, if the maximum difference of density of a leaf node’s neighbors is more than 40 

units, then that node is refined (by copying parent quantities to new children). 

 

Figure 5: Java higher-order function forAll that recursively 
loops through all quadtree leaf nodes and calls some function 𝑓 

on those nodes 
 

Figure 6: Function search that recursively 
searches in the child node the point (𝑖, 𝑗) 

belongs in, until it reaches a leaf node 

The functions of boundary setting, diffusion, projection, and advection were completely 

modelled off Stam’s (2003) Eulerian algorithm. In these functions, instead of a grid, all leaf 

nodes are recursively looped through (using the higher-order function in Figure 5), and their 

values were subsequently set based on the values of precomputed neighbor nodes. Semi-

Lagrangian advection was performed by executing a recursive search function in 𝑂(log 𝑛) time 

(Figure 6) to back-trace fluid parcels. 

Let 𝑛 be the maximum number of highest resolution nodes. For each node, neighbor-

finding and node searching both take 𝑂(log 𝑛) time. In the worst-case, both are performed for 𝑛 

leaf nodes, leading to 𝑂(𝑛 log 𝑛) total time complexity. Looping through all leaf nodes only 
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takes 𝑂(𝑛) time and thus is ignored. 𝑂(𝑛 log 𝑛) is worse than the linear time complexity of the 

original Eulerian algorithm, challenging the “optimization” of this quadtree algorithm. However, 

depending on the simulation situation, this algorithm’s average computational time may still 

drastically improve. 

 

2.5 Particle-Based Algorithm 

One of the most prominent particle-based algorithms is Smoothed Particle 

Hydrodynamics (SPH). A particle system represents discretized fluid parcels. Each particle field 

quantity is calculated based on its neighbors within a certain support radius 𝐻, using the SPH 

rule that “a scalar quantity A is interpolated at location r by a weighted sum of contributions 

from all particles” (Müller, Charypar, & Gross, 2003, p. 155). The SPH rule equation is 

𝐴"(𝑟) ==𝑚#
𝐴#
𝜌#
𝑊(𝑟 − 𝑟# , 𝐻)

#

 

 Where each particle of index 𝑗 has mass 𝑚#, position 𝑟#, density 𝜌#, and field quantity 𝐴#. 

𝑊(𝑟, ℎ) is the smoothing kernel that gives weights to neighboring particles within support radius 

ℎ, such that the resulting weighted average quantity from this equation matches physical fluid 

particle interaction. 



9 
 

 

Figure 7: Lagrangian simulation 
with gravity on an initial block of 

fluid particles 

 

Figure 8: Fluid particles break 
formation as forces are applied to 

every particle 

 

Figure 9: Fluid particles collide 
with the edges of simulation space 

and splash 

 Using the Navier-Stokes equations, the SPH rule, and other physics equations, equations 

for the density, acceleration, pressure force, and viscous force are derived. To maintain code 

simplicity, surface tension is ignored. First, the algorithm brute forces neighbor finding by 

looping through each particle 𝑖, and then checking if particle 𝑗 is a neighbor within radius 𝐻 in a 

nested loop. Neighbor density contributions are summed to calculate pressure. After, density and 

pressure of neighboring particles are used to calculate the forces acting on each particle. Finally, 

the algorithm loops through each particle and accelerates and moves them based on those forces 

(using forward Euler integration). Having nested loops means the theoretical time complexity is 

𝑂(𝑛!). SPH simulation over multiple updates is displayed in Figures 7-9.  

 

2.6 Optimized Particle-Based Algorithms 

 That naïve nested loop neighbor finding algorithm can be optimized to reduce its 𝑂(𝑛!) 

time complexity. Lagrangian particles can be represented by a grid with cell size 𝐻, where each 

cell is a list of all the particles within that square location (ideally, there is only one particle per 

grid cell). Each particle’s position directly maps to its grid index (Figure 10). For a particle in a 

grid cell, its neighbors must be within an 𝐻 radius, meaning they only exist in adjacent cells. 
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Assuming one particle exists per cell, neighbor-finding would thus take constant time, causing 

𝑂(𝑛) total time complexity. This optimization was originally proposed by Desbrun and Gascuel 

(1996). 

 

Figure 10: 2D grid array and particles ArrayList. They are used in function addParticle, which maps a particle’s 
(posX,	posY) coordinate to a corresponding grid index and adds that particle to the end of that grid cell’s ArrayList. 

I personally implemented this algorithm (Figure 10). To accomodate for particles 

clustering in the same grid cell under high pressures, the grid is represented as a 2D array of 

ArrayLists. The grid stores the indexes of particles which are stored in another ArrayList. 

Looping over a separate list of particles allows skipping over grid cells without particles stored 

within. Each particle class is paired with 𝑥 and 𝑦 grid indexes. The pair class is a generic Java 

class supporting two separate data types and values. 

Other optimizations exist for Lagrangian fluid simulation. A spatial hash table allows 

particles of any position (beyond the range of a set grid) to be stored, and simultaneously saves 

memory as data is only stored for occupied cells. Spatial hashing can sometimes be inefficient if 

multiple positions are hashed to the same index. Another optimization is to adaptively refine 

particles based on the regional fluid flow complexity, similar to the quadtree optimization 

(Adams, Pauly, Keiser, & Guibas, 2007). Fluid particles are split into smaller particles if the flow 
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is dynamic, or merged into one big particle if the flow is slow and steady. This effectively 

reduces the amount of particles, which quickens computation while maintaining visual quality. 

 

2.7 Other Algorithms 

 Many other grid- and particle-based algorithms exist to simulate fluids. Hybrid 

algorithms compute Lagrangian particles on an Eulerian grid, gaining the advantages of both 

particle- and grid-based methods. These include particle-in-cell, fluid-implicit-particle, and 

material point method. Deep learning convolutional neural networks can also learn to simulate 

fluids. 

 

3. Experiment Methodology 

3.1 The Algorithms Used 

 Four fluid simulation algorithms are measured and compared: 

1. Ash’s (2006) implementation of Stam’s (2003) grid-based MAC Eulerian algorithm 

2. Quadtree-optimized Eulerian algorithm, which I based off algorithm (1) 

3. Schuermann’s (2017) implementation of Müller, Charypar, and Gross’s (2003) particle-

based SPH Lagrangian algorithm 

4. Grid-optimized Lagrangian algorithm, which I based off algorithm (3) 

 I implemented all algorithms in Java with minor changes to the original code. In 

algorithm (3), Schuermann uses an external C++ library for vector math. I instead utilized my 

own Java Vector class, which contained the functions of vector addition, subtraction, 

normalization, dot product, and magnitude. 
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3.2 Independent and Dependent Variables 

The dependent variable is the time per frame, or the time elapsed after one simulation 

update. Specifically, the update function computes the forces, velocities, densities, and positions 

of each fluid parcel. To measure this dependent variable, Java’s built-in System.nanoTime() 

is called right before and after calling the main update function and subtracted to obtain a long-

type elapsed time variable. For each independent variable manipulation, there was three trials, 

and each trial consisted of ten frames (updates). The time per frame was averaged over these ten 

frames and subsequently printed to the console. 

The independent variable 𝑁 is the amount of fluid parcels per simulation. In the Eulerian 

algorithm, 𝑁 is the number of cells in a square grid, meaning the length of the grid is √𝑁 cells. 

Using a square grid allowed for a more balanced fluid space and simpler code. The density and 

velocity components of each grid cell was initialized randomly within a certain range. The 

quadtree-optimized Eulerian algorithm was initialized with the highest resolution of 𝑁 total leaf 

nodes, set randomly to ensure more varied adaptive refinement as to obtain more holistic data. 

In particle-based algorithms, 𝑁 is the number of particles. Particles move within a 

constant square space of length 𝐿. During initialization, 𝑁 particles are spawned at random 

locations within this space. In the grid-optimized Lagrangian algorithm, this meant particles 

would more uniformly distribute among grid cells, reducing the effect of initial clustering on 

computational time. Additionally, the support radius 𝐻 is set to I$
!
J %
√'

, meaning for a 1D space, 

√𝑁 particles cover a length of %
!
, so 𝑁 particles only cover a fourth of the 2D space. Doing so 

ensures particles can fit and move within the space. Each particle’s velocity was also randomized 

within the same range as those in Eulerian simulations to produce comparable data. 
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3.3 Controlled Variables  

 Each simulation had ten updates or ten frames. To collect data focusing on comparing 

time per frame, fluid parcels were not rendered, which eliminated many unrelated rendering 

efficiency variables such as visual shape of fluid parcels, computation of pixel colors, and anti-

aliasing. 

The code was compiled using Javac and run on a 2020 13-inch MacBook Pro computer 

with an Apple M1 Chip and 8 GB of memory. During the experiment, the only applications 

running were Excel and IntelliJ IDEA Community Edition 2021. Checking Mac’s Activity 

Monitor (which displayed all running processes on the computer) ensured that no other major 

background processes were running. Thus, the available CPU power and memory remained as 

constant as possible, ensuring maximum precision of the experimental data. 

 

4. Experiment Results 

4.1 Data Table 

 The table below lists the data for all four algorithms. The average time per frame column 

uses milliseconds (converted from raw nanosecond data) for easier readability, and displays 

values to the hundredth place to maintain high accuracy. An extra column of frame rate (inverse 

of time per frame, converted to seconds) is provided to intuitively measure the time per frame. 
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Algorithm 
Number of 

Fluid Parcels 
Average Time 
per Frame (ms) 

Frame 
Rate (Hz) 

Eulerian 

1024 5.96 168 
4096 9.74 103 
9216 14.26 70 
12544 15.56 64 
16384 18.88 53 

Quadtree-
Optimized 
Eulerian 

1024 27.82 36 
4096 49.07 20 
9216 79.41 13 
12544 102.12 10 
16384 124.62 8 

Lagrangian 

1024 22.71 44 
4096 189.70 5 
9216 722.42 1 
12544 1309.44 1 
16384 2180.73 0 

Grid-
Optimized 
Lagrangian 

1024 7.83 128 
4096 18.70 53 
9216 31.01 32 
12544 38.25 26 
16384 41.27 24 

Table 1: Each algorithm’s average time per frame (for ten frames) 

 
4.2 Algorithm Performance Graphs 

The graphs below illustrate the data of the four algorithms. Each graph also displays a 

trend line, its equation, and its correlation 𝑅! value. 
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Graph 1: Eulerian algorithm data 

 

Graph 2: Quadtree-Optimized Eulerian algorithm data 

 

Graph 3: Lagrangian algorithm data 

 

Graph 4: Grid-Optimized Lagrangian algorithm data 

 

4.3 General Analysis 

 Evidently, grid-based algorithms and optimizations run faster. The grid-based Eulerian 

algorithm has a linear relationship graph, affirming its theoretical linear time complexity (Graph 

1). For all numbers of parcels, it had the lowest time per frame compared to all the other 

algorithms. This makes sense as the for-loop iterations to update the MAC grid is proportional to 

the number of parcels, and accessing any grid fluid parcel is done in constant time. 
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The overall computational time of the grid-optimized Lagrangian algorithm was second 

best. Whereas Eulerian MAC cells all have 4 neighbors, Lagrangian particles may have more 

than four neighbors in adjacent cells, especially in the initial frames when same-cell particle 

clustering occurs from random particle spawning. As a result, increasing neighbor-finding 

iteration count caused more time per frame. However, the time per frame conformed to an 

approximately square root relationship instead of the theoretical 𝑂(𝑛) for grid-based algorithms  

(Graph 4). 𝑁 particles only cover a fourth of the space, meaning for higher amounts of particles, 

there were more grid cells to spread out to. This made particle clustering less likely, meaning less 

ArrayList looping, and thus less time per frame. However, the algorithm should demonstrate a 

more linear relationship if there is one particle per cell due to constant time neighbor finding, 

suggesting a limited range of data. A future experiment should thus have more manipulations of 

fluid parcel count. 

 In contrast, the unoptimized Lagrangian algorithm’s data supports its 𝑂(𝑛!) theoretical 

time complexity (Graph 3). Its underlying list data structure meant neighbor finding had to be 

brute forced. This caused time per frame to be whole seconds more than other algorithms. Thus, 

using lists to store fluid parcels should be avoided at all costs. 

Perhaps most surprisingly was how the quadtree-optimized Eulerian algorithm data 

conformed to an almost linear relationship (Graph 2). The algorithm’s theoretical 𝑂(𝑛 log 𝑛) 

time complexity was only calculated off worst-case quadtree recursive searches. It does not 

reflect adaptive refinement during simulation. Without external influences, regions that were 

initially uniform were coarsened, resulting in more regional uniformity, creating an overall trend 

of coarsening. Coarsening means less nodes, which saves node searching time. This balances out 

with the 𝑂(log 𝑛) node search time complexity, causing linear time complexity, but time per 
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frame is still five times that of the Eulerian algorithm due to extra recursion. Gradual coarsening 

also suggests a concave down relationship matching 𝑂(log 𝑛) complexity for higher values of 𝑁, 

demonstrating a methodological fault in having the maximum of independent variable 𝑁 be 

16384, which is logarithmically unnoticeable. 

 

4.4 Sample Raw Data and Analysis 

 Examining the experimental raw data provides further insight into the performances of 

the algorithms, as well as the experimental methodology’s effectiveness. The raw data below 

displays the times per frame over 10 frames of the MAC-unoptimized and quadtree-optimized 

Eulerian algorithm simulating 12544 fluid parcels: 

 Time per Frame (ms) 
Frame 

Number Trial 1 Trial 2 Trial 3 

1 53.83 51.69 54.60 
2 25.43 23.81 23.42 
3 12.36 14.51 11.67 
4 9.84 9.65 9.01 
5 11.40 10.50 12.25 
6 9.62 9.58 9.69 
7 9.37 9.92 9.75 
8 9.02 9.53 9.71 
9 7.69 7.10 7.19 
10 10.23 7.21 7.18 

Table 2: MAC Eulerian algorithm raw data 

 Time per Frame (ms) 
Frame 

Number Trial 1 Trial 2 Trial 3 

1 334.10 333.82 321.78 
2 91.98 82.38 86.47 
3 95.86 93.04 66.81 
4 86.41 82.93 69.33 
5 66.61 62.51 68.61 
6 93.38 91.60 54.32 
7 101.77 90.33 91.77 
8 65.68 64.02 82.04 
9 78.86 73.05 53.99 
10 59.08 57.69 63.31 

Table 3: Quadtree-optimized Eulerian algorithm raw 
data 

There is extra time taken for the first frame (Table 2). In fact, this applies to all other 

algorithms. This was surprising as the Eulerian algorithm maintained a constant number of 

iterations per update. The data is explained by Java’s Just-In-Time compiler (JIT), which uses 

and saves computational resources by gradually analyzing and optimizing running Java code. 

Initially, the JIT optimizes method calls, data flow, control flow, and memory, increasing the 
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update time (IBM Corporation, n.d.). Then, as the optimized code is run, the time per frame 

decreases and plateaus. 

The quadtree-optimized Eulerian algorithm (Table 3) displays more exaggerated 

decreases in time per frame, especially in frames 1-3. This suggests that the algorithm’s self-

adapting resolution saved significant amounts of computational resources. The time per frame 

fluctuations after the first 4 frames demonstrate the effects of arbitrary refinement and 

coarsening. 

The unoptimized and grid-optimized Lagrangian algorithms’ raw data for simulating 

12544 fluid parcels also demonstrate nuanced computational behavior: 

 Time per Frame (ms) 
Frame 

Number Trial 1 Trial 2 Trial 3 

1 1899.15 1895.69 1984.00 
2 1552.41 1572.28 1634.90 
3 834.88 842.52 842.27 
4 1304.29 1319.29 1314.82 
5 1309.56 1316.14 1310.27 
6 1314.39 1323.05 1332.34 
7 1320.49 1312.29 1322.67 
8 1316.93 1326.68 1328.92 
9 1315.15 1329.59 1327.14 
10 818.69 830.80 831.50 

Table 4: Unoptimized Lagrangian algorithm raw data 

 Time per Frame (ms) 
Frame 

Number Trial 1 Trial 2 Trial 3 

1 130.77 119.74 128.40 
2 63.91 48.07 65.23 
3 38.12 41.23 34.33 
4 32.57 30.71 31.11 
5 24.48 31.99 30.00 
6 20.81 19.09 22.43 
7 18.40 15.88 28.52 
8 21.12 16.00 20.43 
9 22.42 18.09 16.87 
10 17.90 20.21 18.60 

Table 5: Grid-optimized Lagrangian algorithm raw 
data 

 These algorithms both demonstrate the first frame taking the longest, and time per frame 

plateauing after 4 frames (Tables 4 and 5). The Table 4 frame 10 data seems unusual, but a 

second experiment involving 20 frames revealed that for frames 10-20, the time was between 

700 ms to 900 ms, meaning the time per frame just happened to reach its final plateau at frame 

10. However, more inexplicable outliers appear at frame 3 in Table 4, similar to frame 4 in Table 

2, frame 5 in Table 3, and frames 6-7 in Table 5. Thus, although the data mostly conforms to the 
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decreasing and eventual plateauing trend caused by JIT optimizations, systematic outliers 

demonstrate uncontrolled compiler effects, and are topics of further investigation. 

 

5. Further Research  

The data in this experiment reveals the behaviors of algorithms that are list-based, grid-

based, and tree-based, but other CFD algorithms (especially hybrids) can also be tested and 

compared for their computational times. Fluid starting positions can be predetermined to analyze 

certain aspects of algorithms. The frame count and parcel count can be increased to better 

analyze more general effects of underlying data structures on computational time. 

Memory usage can also be considered to holistically analyze computational complexity. 

It can shed new light on the extent to which the quadtree-optimized Eulerian algorithm actually 

optimizes the MAC Eulerian algorithm. Quadtree simulation is best suited for large spaces, 

where subtrees are only refined around fluid concentrated in specific locations. Testing that 

might yield much more favorable computational efficiency data. 

 There can be further exploration on CFD algorithms by testing the addition or removal of 

fluid matter over time. Physical constants such as viscosity and diffusion can be changed to 

simulate different kinds of fluids. Fluids can be subject to external forces from gravity and 

collisions with solid obstacles, or even other types of fluids. Fluids can even be computed in 

higher dimensions, like 3D space. 

 Moreover, both grid-based and particle-based algorithms can leverage the powerful 

parallel computation of GPUs to run even faster than they do on the CPU. This would better suit 

modern standards and be more directly applicable to modern computers. 
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6. Conclusion 

 The experimental results demonstrate that different underlying data structures cause 

highly different computational times. From fastest to slowest are grid-based algorithms, tree-

based algorithms, then particle-based algorithms. Computational time was largely based off the 

time complexity of neighbor data finding and accessing. The decreasing time per frame 

throughout each trial also demonstrate the heavy influence of JIT optimizations. 

There were many experimental limitations, and most were due to the copious 

uncontrolled variables that made comparing computer algorithms difficult. If I were to repeat the 

experiment, I would set viscosity, diffusion, gravity, parcel size, and bounding space to be the 

same for all algorithms. I would disable real-time compiler optimizations (e.g., the JIT), to 

eliminate the influence of a hidden compiler layer on computational time. I would also 

additionally measure memory usage to better analyze computational efficiency. 

 The applications of this experiment are numerous. Knowledge of the different 

computational times of various algorithms allows one to make better judgements on using the 

appropriate algorithm in certain situations. If I were to make a game that runs in real-time on 

modern laptops, I would use the Eulerian algorithm for highly detailed smoke emissions limited 

to a small volume, or the grid-optimized Lagrangian algorithm for flowing water throughout an 

environment. Analysis of individual algorithms and why some perform better is crucial to 

computational physicists and computer graphics researchers to designing new CFD algorithms. If 

neighbor-finding is further optimized, then fluid can more efficiently be simulated to suit specific 

constraints, or to apply to more general situations with dynamic fluid control. As a whole, the 

essay demonstrates the overall trends in computer science, especially the efficiencies and 

applications of various data structures to model discrete information, such as fluids.
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